<table>
<thead>
<tr>
<th>Class session number</th>
<th>Topics/Activities</th>
<th>Learning Objectives</th>
</tr>
</thead>
</table>
| 1 | Introduction to course | • List the major course objectives
| | | • Describe on a rudimentary level the major course work to be completed during the semester |
| 2 | Analysis vs Decision Making | • Define the term Analysis as it relates to sustainability
| | | • Define the term Decision as it relates to sustainability
| | | • Explain the reason why the decision should come after analysis |
| 3 | Measurement | • Measure instantaneous power use with a Kill-o-watt
| | | • Measure total energy use with a Kill-o-watt
| | | • Compute total energy used from duration of service and power draw
| | | • Discuss the importance of the "Power Factor"
| | | • Interpret measurements made with a Kill-o-watt |
| 4 | Impact Categories | • Describe the necessary first step to making a decision – enumerate the guiding principles or rules
| | | • List and explain important objectives to consider to make decisions that result in greater sustainability
| | | • Explain the general characteristics of processes that lead to decisions |
| 5 | Carbon Footprint Calculation | • Define what is meant by “carbon foot print”
| | | • List processes which contribute to carbon foot prints
| | | • Recognize that different fossil fuels have different CO2 emission rates
| | | • Recognize that fossil fuels have different “heating values”
| | | • Calculate a carbon footprint of a process which burns fossil fuels
| | | • Describe other (non-fossil fuel combustion) components to carbon footprints
| | | • Examples of how results are used |
| 6 | Introduction to Campus Carbon Calculator | • Explain the basic layout of the calculator
| | | • Describe the use of the calculator
| | | • Understand selected entries in the calculator |
| 7 | Tour of a Campus Building | • Recognize devices in the Commons that use the major amount of electricity in the building
| | | • Recognize the devices in the Commons that use Natural Gas
| | | • Recognize devices in the Commons that use Refrigerant
| | | • Recognize the system that handles wastewater in the Commons |
| 8 | CCC: Greenhouse gas Accounting Concepts | • Know which portion of the CCC you are responsible for
| | | • Define the terms: organizational boundary, operational boundary, temporal boundary, Offsets, Scopes 1, 2 and 3 emissions |
| 9 | CCC: Inventory Module - I | • Describe best practices in collecting data for the CCC
| | | • Understand the requirements of the CCC project |
| 10 | RWU CF Work time | |
| 11 | CCC: Summary Module | • Define CO2 equivalent emission
| | | • Describe how the CCC presents summarizes information
| | | • Extract plots and summary data from the CCC
| | | • Discuss what "normalized" results are |
| 12 | CCC: Projection Module | • Describe the types of projection available in the CCC
• Use linear projection to predict a future value of a quantity
• Explain in a general sense how the CCC carries out linear projection |
| 13 | CCC: Solutions Module | TBD |
| 14 | Review for Exam I | |
| 15 | Exam I | |
| 16 | Guest Lecture: how we make decisions | • Define Automatic cognition
• Define Controlled cognition
• Describe the process used when making decisions
• Discuss the idea of “optimal number of choices” |
| 18 | Engineering Decisions | • Describe the terms Technical Analysis, Cost-Effectiveness Analysis
• Perform a simple Technical Analysis |
| 19 | Cost/Benefit Analysis | • Describe the term Cost/Benefit Analysis
• Discuss the scope and limitations of B/C analysis
• Become familiar with the terms annual cost, present worth and sunk costs |
| 20 | LCA - I | • Define LCA
• Discuss the differences between three different types of LCA: Comprehensive, Streamlined, and EIO-LCA
• Describe the various standards that exist for completing LCA’s
• Understand the requirements of the LCA Case Study Project. |
| 21 | Risk Assessment | • Recognize the modes of intake of chemicals into the body
• Calculate the quantities such as CDI
• Characterize risk from known CDI’s |
| 22 | Decision Trees | • Describe the conditions under which it is useful to use a Decision Tree
• Read a decision Tree
• Define and Calculate the expected value of a decision |
| 23 | AHP - I | • Define AHP
• Recognize when it is useful to use AHP
• Describe an example of when AHP was used to make a decision |
| 24 | AHP - II | • Describe in detail the AHP application to a case study (the one presented in class) |
| 25 | LCA - II | Recognize some of the steps on an LCA as portrayed in "Addicted to Plastic" |
| 26 | LCA - III | • Cite specific examples from "Addicted to Plastic" which describe aspects of Scope, LCI, Impact Assessment, and interpretation
• Understand the utility of a flow diagram in LCA
• Draw a basic flow diagram for a process
• Define functional unit in the context of LCA
• Select or be aware of the complexities involved in selecting a functional unit for an LCA
• Define “LCA” Specificity
• Define Scope
• Recognize and critique the scope and goal phase in an LCA study |
| 27 | Review for Exam II | |
| 28 | Exam II | |
| 29 | LCA IV | • Define LCI
• List and describe the key steps in the LCI phase of and LCA
• Draw a general system diagram complete with inputs and outputs
• Identify inputs and outputs
• Recognize and critique the LCI phase in an LCA study |
|-----|--------|---|
| 30 | LCA V | • Define Life Cycle Impact Assessment (LCIA)
• List and describe steps used in the standard LCIA
• Define and list several impact categories
• Recognize and critique the LCIA phase in an LCA study |
| 31 | LCA VI | • Describe the steps in the interpretation phase of an LCA
• Explain why the interpretation phase is required
• List the steps in the standard method of interpretation
• Define completeness, sensitivity, and consistency as they relate to LCA
• Recognize and critique the Interpretation phase in an LCA study |
| 32 | Introduction to the EIS | TBD |
| 33 | Sakonnet Bridge Tour | TBD |
| 34 | Sakonnet Bridge EIS - I | TBD |
| 35 | Sakonnet Bridge EIS - II | TBD |
| 36-40 | Student presentations | TBD |